Selective photocatalytic degradation of azodyes in NiO/Ag3VO4 suspension

نویسندگان

  • Xuexiang Hu
  • Chun Hu
چکیده

BACKGROUND: This work deals with the development of an active heterogeneous catalyst for selective organic synthesis under both visible light and UV irradiation to utilize efficiently solar light. Very few studies have been reported on the selective photooxidation performance of multimetal oxide materials under visible light irradiation. The photocatalytic degradation of azodyes was investigated systematically in aqueous NiO/Ag3VO4 dispersion under visible light irradiation. RESULTS: The catalyst NiO/Ag3VO4 showed high activity and selectivity for the photodegradation of the nonbiodegradable azodyes acid red B, reactive brilliant red X-3B, and acid orange 7. From total organic carbon (TOC), Fourier transform infrared spectroscopy (FTIR), and gas chromatography/mass spectroscopy analyses, the tested azodyes were selectively oxidized into aromatic and aliphatic acids without any decrease of TOC. The high photooxidation selectivity also applied to UV light irradiation. Electron spin resonance and radical scavenger studies suggest that the anionic superoxide radical O2−• was the predominant active species in the photocatalytic reaction. CONCLUSION: The selectivity of NiO/Ag3VO4 for the oxidation of azodyes was not affected by the energy of light (UV and visible light). This approach allows effective controlled oxidation but avoids undesirable mineralization into CO2 and H2O. c © 2010 Society of Chemical Industry

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-type semiconducting NiO nanoparticles synthesis and its photocatalytic activity

Nickel oxide (NiO) nano-size powder is synthesized using nickel (II) acetate tetrahydrate, sodium lauryl sulfate (SLS) and ammonia as precursors. Applied surfactant is anionic surfactant. The sample was characterized by FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results obtained confirm the presence of nickel oxide nano-powders produced during chemical precipitation...

متن کامل

P-type semiconducting NiO nanoparticles synthesis and its photocatalytic activity

Nickel oxide (NiO) nano-size powder is synthesized using nickel (II) acetate tetrahydrate, sodium lauryl sulfate (SLS) and ammonia as precursors. Applied surfactant is anionic surfactant. The sample was characterized by FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results obtained confirm the presence of nickel oxide nano-powders produced during chemical precipitation...

متن کامل

The Photocatalytic Kinetics of the Methyl Orange Degradation in the Aqueous Suspension of Irradiated TiO2

Background: In the present study, the photocatalytic (TiO2/UV) batch process has been used for the methyl orange (MO) degradation. Methods: In the catalyst range from 0.25 to 1.5 g/L, the optimum concentration of TiO2 was found to be 0.5 g/L. The kinetic behavior of MO degradation has been evaluated using the non-linear form of pseudo-first order and pseudo-second order models. Results: The g...

متن کامل

A Comparative Study of Photocatalytic Activity of Some Coloured Semiconducting Oxides

The use of colored semiconductor oxide like copper (II) oxide and nickel (II) oxide for photocatalytic bleaching of rose bengal was investigated in detail. In order to harness the solar energy, the effective wavelength of the photocatalyst is to be expanded into the visible region and that increases the rate of photocatalytic bleaching of the dye. Progress of the reaction was observed spect...

متن کامل

Photocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study

ZnO and 2% Fe doped ZnO photocatalytic nanomaterials were successfully synthesized by successive ionic layer adsorption and the reaction (SILAR) method. The characterizations of these nanomaterials were carried out using XRD, SEM and EDX techniques. XRD study shows that the samples have a hexagonal wurtzite crystal structure, size of which is in the range 21-23 nm. SEM shows nanoflakes or nano ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010